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EFFECTS OF RESPONSE DISPARITY ON
STIMULUS AND REINFORCER CONTROL IN

HUMAN DETECTION TASKS
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In two detection experiments, university students reported whether the second of two sequentially
presented tones was longer or shorter than the first by responding to stimuli presented on a touch
screen. Stimulus disparity and response disparity were manipulated to compare their effects on
measures of discrimination and response bias when the reinforcement ratio for correct responses
was asymmetric. Choice stimuli consisted of squares filled with different pixel densities. Response
disparity was manipulated by varying the difference in density between the two choice stimuli. In
both experiments, decreasing stimulus disparity reduced discrimination but had no consistent effect
on bias. Decreasing response disparity also reduced discrimination in both experiments, and often
reduced estimates of bias. The effects of response disparity on bias were most clear in Experiment
2, in which a greater overall level of response disparity was arranged. The data show that, like
corresponding research with pigeons, detection performance of human subjects can be conceptu-
alized as discriminated operants.
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Organisms are continuously faced with sit-
uations that require a choice. Frequently, the
choice involves distinguishing the environ-
mental state and then making the response
appropriate to that situation. Foraging ani-
mals, for example, must determine if a given
patch contains prey or is empty, and stay or
move to another patch as appropriate (e.g.,
Voss, McCarthy, & Davison, 1993). Decisions
with two stimulus conditions (e.g., ‘‘prey’’ or
‘‘no prey’’) and two responses (e.g., ‘‘stay’’ or
‘‘move’’) are frequently referred to as detec-
tion tasks.

Detection theory (e.g., Green & Swets,
1966) had its origin in engineering and psy-
chophysics, but has become a popular way to
measure performance in detection tasks in a
variety of settings (Alsop, 1998; Swets, 1988).
In broad terms, detection theory can be ap-
plied to any situation that requires a discrim-
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ination between two stimulus conditions (S1
and S2) that is reported by making one of two
possible responses (B1 or B2). In applied set-
tings, this decision process has been investi-
gated in quality control (e.g., Mason & Red-
mon, 1992), medical decision making (e.g.,
Daubs, 1983; Loke, 1989), and a variety of
other diagnostic situations (Swets, 1986,
1988). In experimental psychology this sort
of task has been important in psychophysics,
and has also been used in many other fields,
such as recognition memory (e.g., Snodgrass
& Corwin, 1988) and animal studies of stim-
ulus and reinforcer control (e.g., Blough &
Blough, 1977; Davison & McCarthy, 1988;
Davison & Nevin, 1999).

The behavioral approach to analyzing
these tasks treats performance as a series of
discriminations (Alsop, 1998; Davison & Nev-
in, 1999). To perform the task successfully,
the subject must discriminate between the
two stimulus conditions and between the two
response alternatives. If the stimuli are not
easily discriminated, the subject might occa-
sionally identify S1 as S2 (or S2 as S1) and
make the corresponding, but incorrect, re-
sponse. Similarly, if the response alternatives
are not easily discriminated, then incorrect
responding is likely regardless of the ease of
the sample stimulus discrimination (Godfrey
& Davison, 1998; Nevin, Cate, & Alsop, 1993).
In either of these situations accuracy, or dis-
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crimination, will be reduced relative to con-
ditions with easily discriminable stimuli and
responses. The ability to discriminate the
consequences of a response might also influ-
ence accuracy (Davison & Nevin, 1999; Nevin
et al., 1993). For example, if the consequenc-
es of correct and incorrect responses are not
discriminably different, then discriminative
responding is not required for the same out-
comes to be achieved.

A second aspect of performance in these
tasks concerns biases for one or the other of
the response alternatives that occur indepen-
dently of the sample stimuli. These response
biases are thought to be governed by rein-
forcement variables (McCarthy & Davison,
1981), with responses tending toward the al-
ternative that results in the more frequent,
larger, or less delayed reinforcement. The ex-
tent of these biases can be influenced by the
extent to which the stimuli, responses, and
consequences are distinguishable (e.g., Davi-
son & Nevin, 1999).

A great deal of research has investigated the
effects of changes in stimulus disparity on per-
formance with both human and nonhuman
animal subjects. In general, decreasing the
physical disparity of the stimuli decreases ac-
curacy (e.g., Alsop & Davison, 1991; Tanner &
Swets, 1954). Few studies, however, have inves-
tigated the influence of systematically varying
the disparity of response alternatives. Two re-
cent studies with nonhuman animals (Godfrey
& Davison, 1998; Nevin et al., 1993) have spe-
cifically addressed this issue. Nevin et al.
trained pigeons to respond differentially to
high-luminance (S1) and low-luminance (S2)
stimulus presentations. Responses were distin-
guished by their latency, with relatively short-
latency responses being correct following S1
presentations and relatively long-latency re-
sponses being correct following S2 presenta-
tions. Stimulus disparity was manipulated by
varying the difference in luminance between
the two stimuli, providing a large-difference
condition and a small-difference condition.
Response disparity was also manipulated by
varying the latency criteria denoting B1 and B2
responses to provide large- and small-differ-
ence conditions. Accuracy was highest when
both stimulus and response differences were
large. Decreasing the disparity of either the
stimuli or the responses reduced accuracy, sug-
gesting a functional equivalence of the two

manipulations. Sensitivity to changes in the
relative frequency of reinforcement, estimated
by fits to the data of the Davison and Tustin
(1978) model of detection performance (de-
scribed below), was higher overall in condi-
tions with a small stimulus disparity for both
large and small response disparities. Within
each stimulus-disparity condition, sensitivity to
reinforcement was highest when the response
disparity was large. In summary, sensitivity to
reinforcement increased when the stimulus
disparity was made smaller and decreased
when response disparity was made smaller.

Recent behavioral models of detection per-
formance (e.g., Alsop & Davison, 1991; Dav-
ison & Nevin, 1999) have been developed in
an attempt to account for these sorts of in-
teractions between stimulus and response dis-
parity, and measures of discrimination and
bias. These models provide two parameters
that are designed to measure independently
the discriminability of the stimulus–response
relation and the response–reinforcer relation
implicit in these tasks. Stimulus discrimina-
tion should be influenced by stimulus and re-
sponse disparity, but should be unaffected by
changes in reinforcement. Response–rein-
forcer discrimination, which replaces the sen-
sitivity-to-reinforcement parameter of the
Davison and Tustin (1978) model, should be
influenced by response disparity and the dis-
crimination of consequences, but should be
unaffected by changes in stimulus disparity.
In addition, these models suggest that the bi-
asing effects of reinforcement will become
more pronounced as stimuli become less dis-
criminable. A second prediction is that in-
creased confusability between responses will
reduce reinforcer-based bias as the contin-
gency between responses and their conse-
quences becomes more ambiguous.

Nevin et al. (1993) reanalyzed their data
using the Alsop–Davison model (Alsop, 1991;
Alsop & Davison, 1991; Davison, 1991; Davi-
son & Nevin, 1999) and reported that esti-
mates of stimulus discrimination depended
on differences in sample stimuli, and that es-
timates of response–reinforcer discrimination
depended on the degree of response dispar-
ity. However, in this analysis stimulus discrim-
ination also changed as a function of re-
sponse disparity, and response–reinforcer
discrimination was also influenced by chang-
es in stimulus disparity. The presence of this
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interaction raises difficulties for behavioral
models of detection, because measures of
stimulus discrimination and response–rein-
forcer discrimination should be independent
under these conditions.

Godfrey and Davison (1998) replicated the
Nevin et al. (1993) study to address these is-
sues. They were concerned that the latency-
based definition of responses in the Nevin et
al. study might systematically bias perfor-
mance. In general, pigeons have a tendency
to respond quickly (e.g., Blough, 1978). A
bias of this type might influence parameter
estimates from the Alsop–Davison model. To
overcome this, Godfrey and Davison used
rectangular stimuli filled with different pixel
densities for both the sample stimuli and the
choice stimuli. In each condition, stimuli
were arranged so that one sample stimulus
contained more pixels than the other (S1 and
S2, respectively), except for a condition in
which both stimuli had the same pixel den-
sity. Choice stimuli were also arranged so that
one stimulus contained more pixels than the
other. Pigeons’ responses were occasionally
reinforced for matching the relative density
of the choice stimuli to the relative density of
the sample stimuli. For example, given a pre-
sentation of the sample stimulus with the
greatest pixel density, a correct response
would be to peck the key signaled by the
choice stimulus with the greatest pixel den-
sity. Both sample-stimulus and choice-stimu-
lus disparity were parametrically varied across
several levels.

Godfrey and Davison (1998) reported that
their data supported the predictions of the
Alsop–Davison model in 39 of 45 pairwise
comparisons. Decreasing sample-stimulus dis-
parity tended to reduce stimulus discrimina-
tion, and decreasing choice-stimulus disparity
tended to reduce estimates of response–re-
inforcer discrimination. These data support-
ed the independence of the two discrimina-
tion parameters of the Alsop–Davison model.

Both Godfrey and Davison (1998) and Nev-
in et al. (1993) demonstrated that confusa-
bility between response alternatives has ef-
fects on accuracy similar to those seen when
stimulus disparity is varied; that is, reducing
either stimulus or response disparity de-
creased estimates of accuracy. Furthermore,
response-disparity manipulations affected the
measured response bias induced by any re-

inforcement contingencies present in an en-
vironment. Together, these findings demon-
strate that performance in detection
procedures is jointly determined by discrim-
inations among the stimuli, the responses,
and the outcomes. In this sense, detection
tasks can be viewed as a discrimination be-
tween two discriminated operants (Skinner,
1969). The discriminated operant describes
the simplest chain of events that define a be-
havior: a stimulus (S), a response (B), and a
consequence or reinforcer (R). Detection
tasks comprise two discriminated operants in
the sense that S1 → B1 → R1 and S2 → B2 →
R2 (Davison & Nevin, 1999; Nevin et al.,
1993).

The finding that response disparity influ-
ences accuracy and bias (Godfrey & Davison,
1998; Nevin et al., 1993) has implications for
human performance in many decision-mak-
ing situations. It suggests that accuracy and
sensitivity to outcomes in human decision
making would be compromised if the re-
sponse alternatives are not clearly defined.
Clear response alternatives would therefore
be desirable not only in formal diagnostic or
quality control settings but also in more ev-
eryday contexts such as teaching children
road safety or to behave appropriately in po-
tentially dangerous situations (see, e.g., Al-
sop, 1998). However, the present authors are
unaware of any studies that have systemati-
cally investigated the influence of response
disparity in human decision making. The
present research, then, was designed to in-
vestigate the influence of response disparity
on human detection performance.

Two discrete-trials experiments required
participants to determine whether the second
of two sequentially presented tones was lon-
ger or shorter than the tone immediately pre-
ceding it, and to report this decision by re-
sponding to one of two simultaneously
presented choice stimuli. Response disparity
was manipulated by varying the physical sim-
ilarity of the choice stimuli. Stimulus disparity
was manipulated independently of response
disparity by varying the difference in dura-
tion between the tones comprising a stimulus
presentation. In addition, differential fre-
quencies of reinforcement, in the form of
points and correct feedback, were arranged
in each experiment so that one group of par-
ticipants received more feedback for correct
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Table 1

Characteristics of sample stimuli and choice stimuli for each level for stimulus and response
disparity in Experiments 1 and 2. Sample stimulus values give the duration of the short and
long tones used to create S1 (short/long) and S2 (long/short) presentations. Choice stimulus
values give the number of dots present in B1 (more dots) and B2 (fewer dots) choice stimuli.

Experi-
ment

Sample stimuli

Disparity Values

Choice stimuli

Disparity Values

1 Small
Large

525 vs. 475 ms
550 vs. 450 ms

Small
Medium
Large

92 vs. 88 dots
94 vs. 86 dots
96 vs. 84 dots

2 Small
Large

525 vs. 475 ms
550 vs. 450 ms

Small
Medium
Large

96 vs. 84 dots
98 vs. 82 dots

100 vs. 80 dots

B1 responses and a second group received
more feedback for correct B2 responses. This
allowed the influence of stimulus- and re-
sponse-disparity manipulations on reinforcer-
based bias to be assessed in tandem with their
influence on accuracy. This design is analo-
gous to the procedures employed by Nevin et
al. (1993) and Godfrey and Davison (1998),
allowing comparison of the current research
with humans to that previously conducted
with pigeons.

EXPERIMENT 1

METHOD

Participants

Twelve undergraduate psychology students
(7 female and 5 male) participated for partial
course credit. Their ages ranged from 18 to
23 years, with an average age of 19.3 years.

Apparatus

An IBMt-compatible 486 personal comput-
er, equipped with a 16-bit soundcard and a
Microtoucht touch screen that displayed 256
colors with a resolution of 1,024 by 768 pix-
els, presented all stimuli and recorded re-
sponses. The touch screen had a visible area
of 28 cm by 20.5 cm and was recessed into a
table and tilted towards the participant at an
angle of approximately 228. This was ar-
ranged to reduce the fatigue caused by re-
petitive responding to an upright screen. The
table extended 37 cm from the bottom edge
of the touch screen, providing a surface for
participants to rest their arms between re-
sponses. Tone stimuli were presented
through headphones. Software for generat-

ing stimuli and controlling experimental
events was written by the authors using Turbo
Pascal 6y. Millisecond accuracy for timing
routines was achieved using the procedures
developed by Bovens and Brysbaert (1990).

Tone stimuli were generated by the com-
puter’s soundcard and consisted of 560-Hz
sine waves of varying duration. A long tone
and a short tone were defined for the two
stimulus-disparity conditions. A stimulus pre-
sentation consisted of a sequential presenta-
tion of the long and short tones, separated by
an interstimulus interval of 750 ms. Each
stimulus type was defined by the order in
which the short and long tones were present-
ed. An S1 presentation was defined as a short
tone followed by a long tone, with the reverse
order defining an S2 presentation. Stimuli
were arranged in this manner to avoid the
subjective shortening effect demonstrated by
human participants when judging duration of
tones separated temporally from a reference
tone (Wearden & Ferrara, 1993). Durations
for long and short tones for the two stimulus-
disparity conditions are listed in Table 1. For
the large stimulus-disparity condition, a long
tone had a duration of 550 ms, and a short
tone had a 450-ms duration. These durations
were 525 ms and 475 ms, respectively, for the
small stimulus-disparity condition. Following
a stimulus presentation, subjects were re-
quired to make a response to one of two si-
multaneously presented choice stimuli. Each
choice stimulus was defined by a 227 pixel by
227 pixel area. These areas were not precisely
square due to the aspect ratio of the screen.
Due to some undetected compression on the
right side of the screen, the left choice stim-
ulus measured approximately 57 mm by 55
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mm and the right stimulus measured approx-
imately 55 mm by 55 mm. A distance of 28
mm separated the two adjacent choice stim-
uli, which were arranged to be equidistant
from all sides of the screen.

The two different types of choice stimuli
(B1 and B2) were constructed by generating
a 14 by 14 array for each stimulus and filling
a given number of spaces in the array with
filled 3 by 3 pixel squares, referred to as dots.
On the screen, these dots were approximately
1 mm square. Adjacent dots were separated
by 13 pixels, a distance on the screen of ap-
proximately 4 mm.

B1 and B2 choice stimuli were differentiat-
ed by the number of dots present in the
square. In each choice pair, the stimulus con-
taining the most dots (labeled the ‘‘more
dots’’ response in instructions) was defined
as B1, and the stimulus with the fewest dots
(labeled the ‘‘less dots’’ response in instruc-
tions) was defined as B2. The number of dots
defining each choice stimulus for the three
response-disparity conditions are presented
in Table 1. In the large response-disparity
condition, for example, a B1 choice stimulus
contained 96 dots and a B2 stimulus con-
tained 84 dots. The location of the B1 and B2
choice stimuli on a given trial was selected
randomly and without replacement from a
list, so that across trials the two types of
choice stimuli occurred with equal frequency
on the left and right sides of the screen.

Procedure

On arrival at the laboratory, each partici-
pant was assigned to a reinforcement condi-
tion, with an effort made to keep the ratio of
male to female participants approximately
equal within conditions. Each participant
then received the following instructions:
‘‘You will be presented with a series of trials.
Each trial will begin with a warning signal in
the middle of the screen.’’ Each participant
was instructed to press any key on the com-
puter keyboard to view an example of the
warning signal, which consisted of a small
plus sign presented in the center of the
screen.

‘‘Immediately after the warning signal you
will hear two tones, presented one after the
other. The second tone will either be
SHORTER or LONGER than the first. Follow-
ing the tones, you will see two patterns (like

this).’’ An example of the choice phase of the
trial was then presented. This consisted of
presentation of a B1 choice stimulus on the
left side of the screen and a B2 choice stim-
ulus on the right side of the screen. The num-
ber of dots in the example patterns was cho-
sen from the response-disparity values for the
condition the participant was being exposed
to in the current session.

‘‘When the second tone is LONGER press
the pattern with MORE dots. Here, the left
pattern has MORE dots (press the MORE
dots pattern now). When the second tone is
SHORTER, press the pattern with LESS dots.
Here, the right pattern has LESS dots (press
the LESS dots pattern now).’’ Participants
were then presented with information about
consequences.

‘‘Sometimes you will be told you are cor-
rect and five points are added to your score.
This looks like this (press any key).’’ A re-
sponse to the computer keyboard resulted in
presentation of a reinforcer. This consisted of
a brief presentation of a tone and the words
‘‘Correct! You have won five points’’ super-
imposed over a pattern of pixels presented in
pseudorandom positions and colors.

‘‘Sometimes you are told nothing. You
could be right or wrong. You start with 100
points. Earn as many points as you can. Re-
member, when the second tone is SHORTER,
press the LESS dots pattern and when the
second tone is LONGER, press the MORE
dots pattern. Please respond as quickly and
accurately as you can. If you take too long,
you will be told you are TOO SLOW and the
next trial will begin. Press any key to begin
the first block of trials.’’

A response to any key on the computer key-
board initiated the first trial. Each trial con-
sisted of a warning signal, a tone-pair presen-
tation and, immediately following the offset
of the second tone, simultaneous presenta-
tion of the choice stimuli. If a reinforcer was
scheduled, a correct response resulted in a 1-
s presentation of the reinforcer followed by a
1-s period in which no stimuli appeared on
screen (blackout) or a 1.5-s blackout if no re-
inforcer was scheduled. Incorrect responses
resulted in 1.5 s of blackout. If a response did
not occur within 2.5 s of response presenta-
tion, the trial ended with the words ‘‘TOO
SLOW!’’ presented on the screen for 800 ms
and a 700-ms blackout before the beginning
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of the next trial. The time limit on respond-
ing was enforced to encourage attention to
the task.

Following the completion of a block of 72
trials, the computer screen displayed a mes-
sage informing the particpant that the block
had ended and the number of points earned
so far in the current session. Participants ini-
tiated the next block with a response to the
keyboard. There was no restriction placed on
the interval between blocks, and particpants
were informed verbally to use this period to
rest and make themselves comfortable before
the next block of trials. Participants typically
initiated the next block within 60 s of com-
pletion of the preceding block of trials. Ses-
sions were usually completed within 40 to 45
min. At the completion of each session par-
ticipants were thanked for their participation,
and they were fully debriefed following com-
pletion of their third and final session.

Three levels of response disparity were cre-
ated by manipulating the difference in the
number of dots in the choice stimuli. Each
participant experienced a different level of
response disparity in each of the three ses-
sions. A session consisted of 432 trials, divided
into six blocks of 72 trials. Two levels of stim-
ulus disparity were created by manipulating
the difference in duration between the long
and short tones. Stimulus disparity was ma-
nipulated within sessions, so that the first
three blocks and the remaining three blocks
of trials presented different levels of stimulus
disparity. For example, a given session might
consist of three blocks at the large stimulus-
disparity level followed by three blocks at the
small stimulus-disparity level. The order of
presentation of the stimulus-disparity levels
was counterbalanced across sessions and par-
ticipants. The order of presentation of the
different levels of response disparity was also
counterbalanced across participants, with
each session separated by a minimum of 24
hr.

The participants experienced different rel-
ative frequencies of reinforcement for the two
types of correct responses. For 6 participants,
correct B1 responses were reinforced five
times more frequently than correct B2 re-
sponses (a 5:1 reinforcer ratio). This was ar-
ranged using a controlled-reinforcement pro-
cedure (McCarthy & Davison, 1979; Stubbs &
Pliskoff, 1969) to ensure that the obtained re-

inforcer ratio closely matched the arranged ra-
tio. At the beginning of each session and fol-
lowing each reinforcer delivery, the computer
selected the next trial type (either S1 or S2) to
be reinforced. This was selected randomly and
without replacement from an array, which was
constrained so that S1 trials were selected for
reinforcement five times more frequently than
S2 trials. Once a reinforcer was scheduled, no
other reinforcers were arranged until the cur-
rently scheduled reinforcer was delivered. The
remaining 6 participants experienced a 1:5 re-
inforcer ratio; that is, correct B2 responses
were reinforced five times more frequently
than correct B1 responses. The reinforcer pre-
sentations were arranged using the same con-
trolled-reinforcer procedure. The points
earned from reinforcer presentations were not
exchangeable for any other reward (e.g., mon-
ey or additional course credit).

RESULTS AND DISCUSSION

The number of B1 and B2 responses follow-
ing each stimulus type were recorded, as were
the number of reinforcers received for the
two types of responses. The controlled-rein-
forcement procedure ensured that the log
obtained reinforcer distribution (average 5
0.72) was similar to the log arranged distri-
bution (0.70) (see Appendix A). Responses
from the first block of trials at each level of
stimulus disparity (i.e., the first and fourth
blocks from each session) were removed from
the analyses. This gave participants time to
adjust to the level of stimulus disparity in ef-
fect for that part of the session. Stability was
assessed by comparing estimates of discrimi-
nation and response bias (see below) from
each of the remaining two blocks of trials at
each level of stimulus disparity. Wilcoxon
matched-pairs signed-ranks tests (Siegel,
1956) failed to find reliable differences be-
tween summary measures from these two
blocks for either the 5:1 or 1:5 reinforcer-ra-
tio groups. Subsequent analyses were there-
fore conducted using the collapsed data from
these two blocks of trials (Appendix A).

Performance was evaluated using the Dav-
ison and Tustin (1978) behavioral model of
signal detection. This model, based on
Baum’s (1974) generalized matching law, as-
serts that performance in detection tasks is
jointly determined by stimulus and reinforcer
parameters (see Davison & McCarthy, 1988,
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for review). A point estimate of discrimina-
tion (log d) that is independent of reinforcer
manipulations is calculated by taking half the
log ratio of correct to incorrect responses;
that is,

B ·B11 22log d 5 0.5 log , (1)1 2B ·B12 21

where B11 denotes the number of correct B1
responses following S1 presentations, and B22
denotes the number of correct B2 responses
following S2 presentations. B12 and B21 de-
note the number of incorrect responses fol-
lowing S1 and S2, respectively. The parameter
log d measures the tendency to make the cor-
rect response in the presence of each stimu-
lus.

Similarly, response bias can be estimated by
taking half the log ratio of B1 to B2 responses;
that is,

B ·B11 21log b 5 0.5 log , (2)1 2B ·B12 22

with notation as in Equation 1. Estimates of
log b measure the combined effects of rein-
forcer and inherent biases. Positive estimates
of log b reflect a preference for B1 respond-
ing, whereas negative estimates reflect a pref-
erence for B2 responding. Point estimates of
discrimination and bias were calculated for
each participant in each condition using
Equations 1 and 2. Responses that occurred
faster than 100 ms were regarded as false
starts, and were removed from the analyses.
These were extremely uncommon. One par-
ticipant emitted a higher number of these re-
sponses than other participants in two con-
ditions, but these were small proportions of
the trials (0.09 and 0.08). The estimates of
discrimination from these sessions were con-
sistent with the overall pattern of perfor-
mance for this and other participants. Trials
that terminated without a response after
2,500 ms had elapsed were also infrequent,
and accounted for less than 1% of the total
trials.

Discrimination
Figure 1 shows plots of estimates of log d

for each participant as a function of response
disparity for large and small stimulus dispar-
ities. In general, discrimination decreased as
a function of response disparity for both stim-

ulus-disparity conditions. When the stimulus
disparity was large, 4 participants in the 5:1
group and 5 participants in the 1:5 group
showed monotonically decreasing estimates
of log d as response disparity decreased.
When the stimulus disparity was small, 4 par-
ticipants in the 5:1 group showed monotoni-
cally decreasing estimates of log d. For the 1:5
group, although only 2 participants showed
monotonic trends, a further 2 participants
provided equal estimates of discrimination
for the medium and small levels of response
disparity and a higher estimate of discrimi-
nation when response disparity was large.
These relations were evaluated by conducting
a nonparametric trend analysis (Ferguson,
1965). This analysis ranks and weights the or-
dinal relation of the scores across conditions
for each individual participant to determine
monotonicity. As mentioned above, because
there was no systematic difference between
the performance of the 5:1 and 1:5 groups,
these analyses were carried out using the
combined data from both groups. All report-
ed trends are directional tests. Monotonically
decreasing trends were present for both the
large stimulus-disparity condition (SS 5 30, z
5 4.37, p , .05) and the small stimulus-dis-
parity condition (SS 5 22, z 5 3.24, p , .05).

The influence of stimulus disparity on dis-
crimination was evaluated by comparing
point estimates of discrimination from the
large stimulus-disparity condition to those
from the small stimulus-disparity condition at
each level of response disparity. Wilcoxon
matched-pairs signed-ranks tests revealed that
when the stimulus disparity was large, accu-
racy was higher in the large response-dispar-
ity condition (T 5 2, p , .05) and in the
medium response-disparity condition (T 5 3,
p , .05). There was no difference between
estimates of log d between large and small
stimulus-disparity conditions when the re-
sponse disparity was small (T 5 17, p . .05).

Bias

Figure 2 plots estimates of log b as a func-
tion of response disparity for each stimulus-
disparity condition. If behavior is biased by
the reinforcer distribution, estimates of log b
should be positive for the 5:1 group and neg-
ative for the 1:5 group. Surprisingly, the log
b estimates obtained (Figure 2) suggest an
overall lack of bias for the most reinforced
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Fig. 1. Point estimates of discrimination (log d) for each participant as a function of response disparity for the
large stimulus-disparity condition (upper panels) and the small stimulus-disparity condition (lower panels) of Exper-
iment 1. Estimates from the 5:1 and 1:5 reinforcer-ratio conditions are plotted in the left and right panels, respectively.

alternative. For the 5:1 group, estimates of
bias were greater than 0 for 9 of the 18 cases
when stimulus disparity was large and were
greater than 0 for 10 cases when the stimulus
disparity was small. Estimates of bias from the
1:5 group were below 0 in 14 of 18 cases for
both stimulus disparities. This suggests that
biases were generally in the direction pre-
dicted by the reinforcement ratio for the 1:5
group. However, the magnitude of the biases
was small, with values of log b close to 0 in
most cases, despite the presence of an un-
equal reinforcer distribution. A second fea-
ture of the data, probably an artifact of the
first, is the lack of change in estimates of bias
with changes in stimulus and response dis-
parity. Although bias estimates are slightly

larger in some cases when response disparity
is large, there is little evidence for biases be-
ing influenced systematically by response dis-
parity.

The lack of an effect of the reinforcer-
ratio manipulation is problematic, and is
not predicted on the basis of prior research.
A large body of literature supports the use
of differential frequencies of reinforcement
as a biasing factor with nonhuman animal
subjects (for review, see Davison & McCar-
thy, 1988; Davison & Nevin, 1999). Proce-
dures arranged in similar ways and using
the same reinforcer as the current experi-
ment have also demonstrated the efficacy of
reinforcer frequency manipulations as a bi-
asing factor with human participants (Al-



191RESPONSE DISPARITY IN DETECTION TASKS

Fig. 2. Point estimates of response bias (log b) for each participant as a function of response disparity for the
large stimulus-disparity condition (upper panels) and the small stimulus-disparity condition (lower panels) of Exper-
iment 1. Estimates from the 5:1 and 1:5 reinforcer-ratio conditions are plotted in the left and right panels, respectively.

sop, Rowley, & Fon, 1995; Johnstone & Al-
sop, 1996, 2000).

One major difference between the current
study and previous experiments (Alsop et al.,
1995; Johnstone & Alsop, 1996, 2000) con-
cerns the manipulation of both sample-stim-
ulus and choice-stimulus disparity. It is possi-
ble that the response-disparity manipulation
rendered participants incapable of discrimi-
nating which of the two responses led to the
more frequent delivery of reinforcement. Al-
though the choice stimuli were different
enough to allow accurate responding at all
but the least disparate level of response dis-
parity, the biasing effects of differential rein-
forcement might be more sensitive to chang-
es in response disparity than discriminative

responding. Experiment 2 addressed this
question by replicating Experiment 1 using
greater response disparities.

EXPERIMENT 2

METHOD

Participants
Twelve undergraduate psychology students

(7 female and 7 male), different from those
in Experiment 1, participated for partial
course credit. Ages ranged from 18 to 33
years, with a mean age of 19.9 years.

Apparatus and Stimuli
The apparatus and stimuli used were iden-

tical to those used in Experiment 1, with the
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exception of the number of dots present in
the response stimuli. In the large response-
disparity condition, a B1 choice stimulus con-
tained 100 elements and a B2 choice stimulus
contained 80 elements. The B1 and B2 choice
stimuli at the medium level of response dis-
parity contained 98 and 82 dots, respectively.
For the small response-disparity condition, a
B1 choice stimulus contained 96 dots and a
B2 choice stimulus contained 84 dots. The val-
ues for the small response-disparity condition
were the same as those used for the large re-
sponse-disparity condition of Experiment 1
(see Table 1).

Procedure

The design, instructions to participants, or-
der of conditions and counterbalancing were
identical to that of Experiment 1.

RESULTS AND DISCUSSION

As in Experiment 1, the number of B1 and
B2 responses following each stimulus type
were recorded, as were the number of rein-
forcers received for the two types of respons-
es. The controlled-reinforcement procedure
ensured that the log obtained reinforcer dis-
tribution (average 5 0.70) was again similar
to the arranged log reinforcer distribution
(Appendix B). The same criteria regarding
exclusion of trials as Experiment 1 were ap-
plied; that is, the first 72 trials at each level
of stimulus and response disparity were re-
moved, as were trials of latency less than 100
ms. Only one trial was under this latency cri-
terion, and trials on which responses did not
occur within 2,500 ms accounted for less than
1% of the data. Stability was assessed in the
same manner as Experiment 1, and again no
significant differences in summary estimates
from the last two blocks of trials at each level
of stimulus disparity were revealed. The col-
lapsed data used in subsequent analyses are
presented in Appendix B. Estimates of log d
and log b were calculated using Equations 1
and 2 (see Experiment 1).

Discrimination

Figure 3 plots discrimination (log d) as a
function of response disparity for both large
and small stimulus disparities. The pattern of
results was somewhat more variable than in
the previous experiment; however, there were

no systematic differences in performance be-
tween reinforcer-ratio groups.

Discrimination tended to be lowest when
response disparity was small. When the stim-
ulus disparity was large, 4 participants in the
5:1 group showed monotonically decreasing
trends in discrimination with decreased re-
sponse disparity. For the 1:5 group, although
only 2 participants showed monotonically de-
creasing trends, a further 3 participants
showed consistent decreases in discrimina-
tion between the medium and small levels of
response disparity. Overall, there was a signif-
icant decreasing trend in discrimination as re-
sponse disparity decreased when evaluated
using nonparametric trend analysis (SS 5 22,
z 5 3.05, p , .05). When the stimulus dispar-
ity was small, there were less consistent effects
of response disparity on discrimination, with
only 1 participant in each group showing
monotonically decreasing trends. Conse-
quently, there was no significant trend at this
level of stimulus disparity. The level of stim-
ulus disparity influenced estimates of discrim-
ination, with log d values larger in the large
stimulus-disparity condition than in the small
stimulus-disparity condition for each level of
response disparity. The presence of higher
discrimination with large stimulus disparity
was confirmed by Wilcoxon matched-pairs
signed-ranks tests at the large (T 5 1, p ,
.05), medium (T 5 0, p , .05), and small (T
5 5, p , .05) levels of response disparity.

Bias

Estimates of bias are plotted in Figure 4 in
the same manner as the discrimination data
(Figure 3). Control by the asymmetric ratios
of reinforcement appears to have been estab-
lished, particularly at large response dispari-
ties. When response disparity was large, all 6
participants in the 5:1 group produced esti-
mates of bias that were greater than 0 at both
levels of stimulus disparity. Likewise, 5 partic-
ipants in the 1:5 group exhibited bias esti-
mates of less than 0 when response disparity
was large at both levels of stimulus disparity.
The majority of participants continued to ex-
hibit biases in the direction predicted by the
reinforcer ratio at the medium level of re-
sponse disparity. Overall, estimates of bias
tended to become less extreme as response
disparity decreased, for both large and small
stimulus disparities. Three participants in the
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Fig. 3. Point estimates of discrimination (log d) for each participant as a function of response disparity for the
large stimulus-disparity condition (upper panels) and the small stimulus-disparity condition (lower panels) of Exper-
iment 2. Estimates from the 5:1 and 1:5 reinforcer-ratio conditions are plotted in the left and right panels, respectively.

5:1 group showed monotonically decreasing
trends as response disparity decreased at both
levels of stimulus disparity. Response bias de-
creased between either the large and medi-
um response-disparity levels or the medium
and small response-disparity levels for a fur-
ther 2 participants when stimulus disparity
was large and for a further 3 participants
when stimulus disparity was small. For the 1:5
group, 2 participants showed monotonically
increasing trends when the stimulus disparity
was large, and 3 participants showed this re-
lation when the stimulus disparity was small.
Estimates of response bias increased between
either the large and medium response-dis-
parity levels or the medium and small levels
of response disparity for a further 3 partici-

pants when stimulus disparity was large and
for an additional 2 participants when stimulus
disparity was small. These trends were evalu-
ated by first multiplying the estimates from
the 1:5 group by 21 so that positive estimates
from both groups reflect a preference for the
most frequently reinforced alternative, and
then conducting nonparametric trend tests
on the combined data. Nonparametric trend
tests revealed significant trends when the
stimulus disparity was large (SS 5 12, z 5
1.70, p , .05) and when the stimulus disparity
was small (SS 5 16, z 5 2.26, p , .05). Finally,
estimates of bias for the two stimulus-disparity
conditions did not differ at each level of re-
sponse disparity when compared using Wil-
coxon matched-pairs signed-ranks tests.



194 STEPHEN GALLAGHER and BRENT ALSOP

Fig. 4. Point estimates of response bias (log b) for each participant as a function of response disparity for the
large stimulus-disparity condition (upper panels) and the small stimulus-disparity condition (lower panels) of Exper-
iment 2. Estimates from the 5:1 and 1:5 reinforcer-ratio conditions are plotted in the left and right panels, respectively.

The findings of Experiment 2 largely con-
firm that the response confusability manipu-
lation influenced both discrimination and re-
sponse bias. The decrease in measured bias
as response disparity decreased confirms that
the failure to observe an effect of response
disparity on bias in Experiment 1 was due to
the overall level of response disparity being
too difficult for adequate differential rein-
forcer control to be achieved. This is also ap-
parent in the overall larger estimates of re-
sponse bias in Experiment 2, relative to
Experiment 1.

GENERAL DISCUSSION
Taken together, the results of the present

experiments provide further evidence for

conceptualizing detection tasks as discrimi-
nated operants, where stimulus, response,
and reinforcer characteristics jointly deter-
mine performance (Davison & Nevin, 1999).
Human performance on these tasks, like that
of pigeons, involves a series of discrimina-
tions of which the disparity between the sam-
ple stimuli themselves are only one part. A
complete model of detection performance
must therefore capture the effects of stimu-
lus, response, and reinforcer characteristics.

Experiments 1 and 2 showed that response-
disparity manipulations in human detection
produce effects similar to those seen with
nonhuman animals. The results are consis-
tent with two important features of the data
of Nevin et al. (1993) and Godfrey and Dav-
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Fig. 5. The upper panels plot mean estimates of log d (Panel A) and log b (Panel B) for human participants
from Experiments 1 and 2 as a function of stimulus disparity and response disparity. The lower panels plot estimates
of log d (Panel C) and a (Panel D) for pigeon subjects from Godfrey (1997) and Godfrey and Davison (1998). For
both stimulus and response disparity, 1 indicates the lowest level of disparity arranged. Note that there are no data
for the most extreme response disparity at the most extreme stimulus disparity in Panels C and D, because this
condition was not conducted.

ison (1998). First, decreasing response dis-
parity usually resulted in lower estimates of
discrimination (Figures 1 and 3). Second, de-
creasing response disparity reduced estimates
of response bias, provided the overall level of
response disparity was sufficient for reinforc-
er-based biases to occur (Figure 4).

The independent effects of stimulus dis-
parity and response disparity in the current

experiments can be summarized with three-
dimensional plots. Panels A and B of Figure
5 plot the data from Experiments 1 and 2 in
this manner, averaged across all participants.
In Figure 5, the different levels of stimulus
disparity and response disparity are repre-
sented ordinally, with greater numbers indi-
cating greater disparity. The data from the
large response-disparity condition of Experi-



196 STEPHEN GALLAGHER and BRENT ALSOP

ment 1 and the small response-disparity con-
dition of Experiment 2 were averaged, be-
cause they shared the same difference in the
number of dots between the two choice stim-
uli. Panels C and D of Figure 5 present av-
erage data from Godfrey and Davison (1998)
and Godfrey (1997), reanalyzed using the
Davison and Tustin (1978) model of detec-
tion to allow comparison of corresponding
pigeon data with the experiments reported
here. The data from these studies are the
most appropriate for comparison because
similar stimuli were used to signal responses
(dot density), and response disparity was ma-
nipulated in the same way as in the current
experiments. Sensitivity to reinforcement (a),
plotted in Panel D, can be considered as a
measure of reinforcer control that is inde-
pendent of inherent bias (c) (Davison & Tus-
tin, 1978). The a parameter indexes the slope
of the function relating the behavior ratio to
the reinforcer ratio.

Figure 5 (Panels A and C) shows that the
independent effects of stimulus-disparity and
response-disparity manipulations on discrim-
ination are similar for pigeon and human
performance. Discrimination is highest when
both stimulus and response disparity are
highest, and is lowest when both stimulus and
response disparity are lowest. Average esti-
mates of discrimination are lower overall in
the small stimulus-disparity condition than in
the large stimulus-disparity condition, and re-
ducing response disparity produces orderly
decreases in discrimination at both levels of
stimulus disparity.

Panel B presents estimates of bias from Ex-
periments 1 and 2. The highest average esti-
mates of bias were obtained when response
disparity was highest, and decreasing re-
sponse disparity produced orderly decreases
in bias until the second-least disparate level
of response disparity, at which point there ap-
pears to be a floor effect. There was no evi-
dence of systematic changes in bias with stim-
ulus-disparity manipulations, however; that is,
at each level of response disparity, estimates
of bias were similar for the two stimulus-dis-
parity conditions. This appears to be incon-
sistent with previous reports of increases in
sensitivity to reinforcement as stimulus dis-
parity is reduced (e.g., Godfrey & Davison,
1998; Nevin et al., 1993). This interpretation
of the log b data, however, must be treated

with caution because point estimates of log b
include the influence of inherent biases,
whereas previous research has measured sen-
sitivity to reinforcement independently of in-
herent bias. It is possible that idiosyncratic in-
herent biases are obscuring changes in the
degree of reinforcer-based bias as a function
of stimulus disparity. That said, response dis-
parity did influence average estimates of log
b in Figure 5 (Panel B), and counterbalanc-
ing of the choice-stimulus location within a
participant and the reinforcer ratio between
participants should have attenuated any sys-
tematic inherent biases.

The ambiguity concerning the relation be-
tween stimulus disparity and estimates of re-
sponse bias in the current data is perhaps not
surprising. Previous research has provided
less consistent evidence of this relation than
other aspects of performance in these tasks.
Nevin et al. (1993) showed increases in mea-
sures of reinforcer control when stimulus dis-
parity was reduced, but McCarthy and Davi-
son (1980) reported no increase in sensitivity
to reinforcement with changes in stimulus
disparity. The data provided by Alsop and
Davison (1991) show both increases and de-
creases in reinforcer sensitivity as stimulus
disparity is manipulated. Godfrey (1997) and
Godfrey and Davison (1998) provide one of
the most extensive data sets addressing this
issue. Their reanalyzed data are plotted in
Figure 5 (Panel D). In this analysis, sensitivity
to reinforcement (a) usually decreased as re-
sponse disparity was reduced, with the excep-
tion of the medium level of stimulus disparity,
which increased from the highest level of re-
sponse disparity to the medium level but then
decreased from this level to the smallest level
of response disparity. Overall, this aspect of
their results is consistent with the bias esti-
mates from human participants in the pres-
ent study.

Together, however, Godfrey’s (1997) and
Godfrey and Davison’s (1998) results show
less clear evidence for increases in reinforcer
sensitivity with decreases in stimulus disparity
in this analysis. In some cases, values of a de-
creased or remained stable as stimulus dis-
parity was decreased. Furthermore, the mag-
nitude of the changes associated with
manipulating stimulus disparity was relatively
small in comparison with the effect of such
manipulations on discrimination (Panel C).
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Although changes in stimulus disparity might
have influenced sensitivity to reinforcement
in Godfrey’s data, the effects were less orderly
and the degree of influence was small relative
to the effects on discrimination. When viewed
in relation to these previous studies, the data
from the current experiments do not seem
too discrepant.

There is an interesting relation between
discrimination and bias in the current exper-
iments (Figure 5, Panels A and B). Some con-
ditions that produced near-zero estimates of
bias in the presence of an asymmetric rein-
forcer distribution were associated with
above-zero estimates of discrimination, sug-
gesting that stimulus control was present
when control by the different reinforcer fre-
quencies was very low or absent. In behavior-
al detection research, it is a commonly held
view that there can be no stimulus control
without some form of differential reinforcer
control (e.g., Davison & Nevin, 1999), in the
sense that differential responding under the
two stimulus conditions is precluded if there
is no discernible contingency between the
two types of correct response and their asso-
ciated reinforcement.

There are two obvious approaches to the
possibility that reinforcer control, in the
sense of maintaining accurate responding, re-
mained in the absence of reinforcer control
in terms of biased responding attributable to
the asymmetric frequencies of reinforcement
(Figure 5, Panel B). First, it might be that a
certain level of disparity in the choice stimuli
is sufficient for the subject to discriminate
that responses following a given stimulus are
reinforced on one alternative and never re-
inforced on the other alternative, but is in-
sufficient for clear discrimination of the dif-
ferences between the reinforcer rates of the
two classes of correct response. Although this
is the simplest interpretation of the data, it
should be treated cautiously because no be-
havioral model of detection distinguishes be-
tween these two types of reinforcer control.

The second approach reflects a difference
between the procedure used with pigeons
and that used here with human participants.
In the current experiments, the participants
received instructions defining accurate re-
sponding. These instructions might have had
some role in maintaining accurate respond-
ing in the absence of any differential control

relating to the asymmetric reinforcer fre-
quencies. It is clear that verbal instructions
can influence humans’ behavior in operant
tasks (e.g., Baron & Galizio, 1983). We cannot
distinguish between the influences of instruc-
tional and reinforcer control in the current
task, because both would maintain accurate
responding. In the current case, however, it
is still true that a certain level of response
disparity was sufficient to allow accurate re-
sponding but was insufficient to show the bi-
asing effects of different frequencies of rein-
forcement, even though this latter effect was
easily obtained at large response disparities.
Future extensions of behavioral models of de-
tection to procedures with humans might
need to address the relative contribution of
instructions and reinforcement contingencies.

Although the relation between stimulus
control and reinforcer control in the current
experiments is equivocal, it raises an interest-
ing general issue regarding the nature of re-
inforcer control in these tasks. Reinforcer
control in a detection task can be conceptu-
alized on at least three levels. In its broadest
sense, reinforcer control reflects the strength
of the relation between schedules of rein-
forcement and the likelihood of a response.
For example, in single-schedule research
(e.g., Herrnstein, 1961), reinforcer control is
seen in changes in response rate with chang-
es in the frequency of reinforcement. Such
control maintains any behavior on the task.
At another level, differential reinforcement
maintains accurate responding in two-alter-
native detection tasks because reinforcement
is scheduled only for the responses designat-
ed correct for each stimulus condition (but
see Davison & McCarthy, 1980; Nevin, Jen-
kins, Whittaker, & Yarensky, 1982; Nevin, Ol-
son, Mandell, & Yarensky, 1975). Reinforcer
control in this sense is implicit in accurate
discriminative responding in two-alternative
tasks. Finally, differential reinforcer control
can produce response biases when the distri-
bution of reinforcement across two alterna-
tives is asymmetric because of differences in
magnitude, delay, or frequency of reinforce-
ment. This is the type of reinforcer control
indexed by the bias and sensitivity-to-rein-
forcement parameters of Davison and Tus-
tin’s (1978) model. The data from the cur-
rent experiments with humans suggest that at
certain levels of response disparity, accurate
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responding occurred even when there was lit-
tle evidence of bias due to differential rein-
forcement. One interpretation of this finding
is that the bias parameters provided by the
Davison–Tustin model do not capture all as-
pects of reinforcer control, although these
parameters are frequently referred to in that
manner (e.g., McCarthy & Davison, 1991).
The notion that reinforcer control may be
present when the biasing effects of asymmet-
ric reinforcement are not exhibited, and the
definition of reinforcer control in terms of
models of detection, remain interesting con-
ceptual issues.

The present studies support previous re-
search (e.g., Alsop, 1991; Alsop & Davison,
1991; Davison, 1991; Davison & Nevin, 1999;
McCarthy & Davison, 1991) showing that the
relation between measures of discrimination
and response bias is more complicated than
that captured by models such as Davison and
Tustin’s (1978) account or more traditional
signal-detection approaches (e.g., Green &
Swets, 1966). A formal analysis of the present
results by more recent behavioral approaches
to detection (e.g., Alsop & Davison, 1991;
Davison & Nevin, 1999) was not possible in
this case, however. These models have the dis-
advantage of requiring experiments with a
greater number of reinforcer-ratio manipu-
lations to obtain accurate parameter esti-
mates. The use of human participants con-
strained the number of conditions that we
could reasonably expect our participants to
complete.

The practical constraints associated with
the use of humans raise some other issues.
First, the combined analysis of Experiments 1
and 2 presented in Figure 5 used data from
two different groups of participants. No sin-
gle participant was exposed to all five levels
of response disparity plotted in this figure, so
the continuous function is a composite of two
groups of participants. That said, it is impor-
tant to note that the only unusual finding,
namely, the lack of an effect of stimulus dis-
parity on response bias, is always based on a
within-participant comparison. Second, the
differential ratio of reinforcement was manip-
ulated between participants, so that one
group received more frequent reinforcement
for B1 responses and a second group received
more frequent reinforcement for B2 respons-
es. Finally, only two levels of stimulus disparity

were employed, which prevents a thorough
investigation of the relation between stimulus
disparity and reinforcer control. However, the
difference between the two levels of disparity
was sufficient to show marked differences in
discrimination. Despite these methodological
differences between the current human ex-
periments and research with pigeons, the
data from these experiments were remarkably
consistent with the data from Godfrey (1997)
and Godfrey and Davison (1998). Neverthe-
less, the issues raised here may help to ex-
plain the failure to find a systematic effect of
stimulus disparity on estimates of bias and
reconcile the differences between these data
and those of other studies (e.g., Nevin et al.,
1993).

Alsop (1998) noted that contemporary re-
views of detection performance (e.g., Mac-
millan & Creelman, 1991; Swets, 1986) tend
to overlook the substantial body of research
generated in the experimental analysis of be-
havior. In part, this seems to arise because
nonhuman animals are typically used as sub-
jects in this field. The present experiments
demonstrated that comparable results can be
obtained with humans using procedures anal-
ogous to those used with nonhuman animals.
In this particular case, the comparison con-
cerns the role of response disparity on detec-
tion performance. More generally, these re-
sults suggest that conceptualizing detection as
discriminated operants (e.g., Alsop, 1998;
Davison & Nevin, 1999; Nevin et al., 1993)
may be beneficial in more traditional exper-
imental and applied uses of detection theory.
Such an approach provides a more complete
picture of the factors that influence perfor-
mance, and this allows these factors, once
identified, to be controlled to reduce vari-
ance in measures and to engineer environ-
ments that maximize performance.
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APPENDIX A

The number of responses emitted following S1 (B11 and B12) and following S2 (B21 and B22)
stimulus presentations, and the number of reinforcers obtained for correct responses (R11
and R22) for each participant in each condition of Experiment 1. Data are from the last 144
trials of each stimulus-disparity condition.

Partici-
pant

Stimulus
disparity

Response
disparity B11 B12 B21 B22 R11 R22

1 Large

Small

Large
Medium
Small
Large
Medium
Small

68
58
39
65
48
41

4
14
33
7

24
31

19
17
30
52
38
41

53
55
42
19
34
31

60
47
34
38
39
27

11
11
7
8
8
5

2 Large

Small

Large
Medium
Small
Large
Medium
Small

57
61
53
48
51
43

15
11
19
23
21
29

26
17
32
36
16
41

45
55
40
36
56
31

51
55
45
36
47
35

11
11
9
6
8
7

3 Large

Small

Large
Medium
Small
Large
Medium
Small

58
48
47
51
48
47

14
24
25
21
24
25

27
20
43
33
29
25

45
52
29
39
43
47

43
44
38
35
40
44

9
8
7
8
9

10
4 Large

Small

Large
Medium
Small
Large
Medium
Small

62
49
45
50
48
41

9
19
25
22
22
27

9
24
24
15
29
34

59
47
46
57
37
35

55
38
34
42
40
38

10
8
6
9
7
8

5 Large

Small

Large
Medium
Small
Large
Medium
Small

58
42
38
45
33
32

13
25
31
27
34
38

5
19
25
15
23
27

66
51
46
57
47
40

54
42
37
39
30
30

11
9
6
7
6
4

6 Large

Small

Large
Medium
Small
Large
Medium
Small

45
46
35
57
46
33

19
20
37
15
26
38

18
17
28
21
23
25

47
48
43
50
48
46

38
36
31
50
36
28

9
6
6
9
8
5

7 Large

Small

Large
Medium
Small
Large
Medium
Small

47
53
40
49
50
34

25
18
24
20
21
33

10
18
22
17
25
27

62
53
47
53
47
43

10
10
7
9
8
9

51
47
39
46
41
36

8 Large

Small

Large
Medium
Small
Large
Medium
Small

50
46
41
42
42
34

22
26
31
29
30
38

20
19
27
31
22
34

51
53
45
40
50
36

8
8
8
6
7
5

49
40
37
35
38
27

9 Large

Small

Large
Medium
Small
Large
Medium
Small

58
56
45
57
44
38

14
16
27
15
28
34

11
22
21
14
30
24

61
50
51
58
41
48

11
10
8
9
7
6

54
48
42
49
37
42
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APPENDIX A

(Continued)

Partici-
pant

Stimulus
disparity

Response
disparity B11 B12 B21 B22 R11 R22

10 Large

Small

Large
Medium
Small
Large
Medium
Small

50
34
37
32
33
38

22
38
35
40
39
34

22
35
27
21
27
32

50
36
45
51
45
40

9
6
7
7
8
7

46
33
38
38
36
35

11 Large

Small

Large
Medium
Small
Large
Medium
Small

43
38
38
32
39
33

29
34
34
40
33
39

23
23
33
18
20
25

49
49
39
54
52
46

8
8
6
7
8
8

41
43
38
41
43
42

12 Large

Small

Large
Medium
Small
Large
Medium
Small

61
44
37
42
49
36

11
16
27
30
21
25

11
14
22
7

24
22

61
53
39
65
47
41

12
9
7
9
8
7

59
43
36
48
38
32
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APPENDIX B

The number of responses emitted following S1 (B11 and B12) and following S2 (B21 and B22)
stimulus presentations, and the number of reinforcers obtained for correct responses (R11
and R22) for each participant in each condition of Experiment 2. Data are from the last 144
trials of each stimulus-disparity condition.

Partici-
pant

Stimulus
disparity

Response
disparity B11 B12 B21 B22 R11 R22

1 Large

Small

Large
Medium
Small
Large
Medium
Small

71
72
70
65
71
67

1
1
1
7
1
5

2
5
7

14
11
13

70
67
65
58
61
59

66
57
54
59
63
56

14
12
12
11
12
11

2 Large

Small

Large
Medium
Small
Large
Medium
Small

64
57
50
55
48
55

8
15
22
16
24
17

30
15
28
32
24
19

41
57
44
38
48
52

54
49
39
42
42
43

10
11
6
9
9
8

3 Large

Small

Large
Medium
Small
Large
Medium
Small

65
67
63
67
60
56

7
5
9
5

12
16

17
27
21
29
49
35

55
44
51
43
23
37

55
52
55
61
39
49

10
10
10
12
8

10
4 Large

Small

Large
Medium
Small
Large
Medium
Small

65
62
68
65
59
61

3
8
4
5

11
11

16
27
14
35
34
30

55
45
58
28
34
41

52
49
61
48
46
48

11
10
13
10
9
9

5 Large

Small

Large
Medium
Small
Large
Medium
Small

69
61
44
52
47
39

2
9

21
19
25
31

22
8

12
28
20
12

50
63
52
43
52
57

60
50
38
48
44
38

10
10
8

10
10
6

6 Large

Small

Large
Medium
Small
Large
Medium
Small

71
69
63
68
65
58

1
3
9
4
7

14

36
19
37
37
40
41

36
53
35
35
32
31

62
58
49
46
51
43

10
10
10
11
9
9

7 Large

Small

Large
Medium
Small
Large
Medium
Small

63
67
63
54
47
50

9
5
9

18
25
22

4
3

14
53
21
27

68
69
58
19
51
45

11
12
11
4

10
8

61
58
52
19
47
37

8 Large

Small

Large
Medium
Small
Large
Medium
Small

71
64
55
51
53
42

1
8

16
21
18
30

10
2
5
5
3
9

62
70
67
67
69
62

9
12
12
11
13
9

47
57
56
60
54
45

9 Large

Small

Large
Medium
Small
Large
Medium
Small

56
54
54
62
44
49

16
18
18
10
27
22

5
5
5
8

14
10

67
67
67
64
57
61

12
12
10
13
9

12

57
56
53
55
47
51
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APPENDIX B

(Continued)

Partici-
pant

Stimulus
disparity

Response
disparity B11 B12 B21 B22 R11 R22

10 Large

Small

Large
Medium
Small
Large
Medium
Small

53
64
58
44
53
53

19
7

14
28
19
19

16
16
19
16
21
22

56
56
53
55
50
50

9
9
9
8
9
9

47
47
41
41
43
44

11 Large

Small

Large
Medium
Small
Large
Medium
Small

47
48
48
37
55
44

25
24
24
35
17
28

7
4

32
16
17
31

65
68
40
56
55
40

10
11
7
9

10
6

48
51
32
46
45
32

12 Large

Small

Large
Medium
Small
Large
Medium
Small

64
60
58
55
37
40

8
12
14
17
34
32

1
2

10
2
6

14

71
70
61
70
66
58

14
12
13
12
9

10

65
54
52
57
46
47


